
Part

IV
Client-Side Scripting

9C H A P T E R

CLIENT-SIDE SCRIPTING

ou have seen JavaScript used in most of the web projects presented in this

book. That’s because without JavaScript or some other equivalent type of

programming language, it is impossible to create truly interactive web

pages and applications. Of all browser-based programming languages currently

available, JavaScript is by far the most popular and universally supported.

JavaScript helps bind together (X)HTML, CSS, and the DOM. A good understanding

of JavaScript is essential to any serious web developer.

Specifically, you will learn how to:

• Create and embed JavaScript in web pages

• Collect, store, and modify data using variables and to apply conditional and

iterative programming logic

• Organize JavaScript statements into functions that process and return data

• Use arrays to store and process collections of data

• Trigger function execution when browser events occur

PROJECT PREVIEW: THE WORD DECODER CHALLENGE

In this chapter’s web project, you will learn how to create a new game called the

Word Decoder Challenge. This game will present the player with a series of

Y

scrambled words and challenge him to attempt to unscramble them. When first started, the

screen shown in Figure 9.1 is displayed. Game play occurs within a white rectangle area that

is centered horizontally on the browser window.

FIGURE 9.1

To begin game play
the player clicks
on the Get Word

button.

Each time a new word is displayed, a browser window dynamically refreshes its content and

displays a scrambled word in red, as demonstrated in Figure 9.2.

Once the player thinks the word has been properly decoded, he clicks on the Check Answer

button to see the results of his effort. If the player’s answer is correct, the player is notified

via a message displayed in a popup dialog window. Similarly, if the answer supplied is not

correct or if the player failed to key in anything, other messages are displayed.

HTML, XHTML, and CSS for the Absolute Beginner286

FIGURE 9.2

The player’s job is
to correctly

retype the word in
unscrambled form

in the text field.

INTRODUCING JAVASCRIPT

JavaScript is a computer programming language used in the development of scripts. Scripts

are small programs embedded inside HTML pages. Scripts allow you to add interactive content

to web pages. JavaScript is an interpreted programming language. This means that scripts

are not converted to an executable form until the HTML page they reside in is processed.

The drawback to interpreted scripts is that they execute slower than programs written

in compiled programming languages, which are converted into executable code at develop-

ment time.

JavaScript is an object-based programming language, seeing everything within web docu-

ments and the browser as objects. To JavaScript, image files, text controls, and button controls

are all just different types of objects. All objects have properties. Properties describe attributes

about an object. For example, buttons display text specified using the value property. img

elements also have properties. For example, there are properties that you can set to control

a graphic’s height and width and that you can use to specify its URL.

Objects also have methods, which are collections of statements that can be called upon to

perform specified actions and tasks. For example, you can define methods within your

JavaScripts that when called will validate form content. Object properties and methods enable

JavaScripts to dynamically alter both content and its presentation on web pages.

Chapter 9 • Client-Side Scripting 287

within the browser. This is facilitated by JavaScript’s ability to initiate code execution based

on the occurrence of different events. An event is an action initiated as a result of user inter-

action with your web page in the browser. Events occur when the user clicks on or interacts

with form elements. Events occur when web pages are opened and closed. Events also occur

when the user moves the mouse pointer or enters keystrokes.

WORKING WITH JAVASCRIPT

As you have already seen, JavaScripts are inserted into HTML pages using the script element.

Figure 9.3 outlines the syntax that you must follow when working with this element.

FIGURE 9.3

An examination of
the syntax
required to

integrate (X)HTML
and JavaScript in
your documents.

The syntax outlined in Figure 9.3 includes the use of two key attributes, both of which are

located in the opening <script> tag. The keyword type attribute is always set equal to text/

javascript and the optional scr tells the browser where to locate an external JavaScript file

(used in situations where you want to keep your markup and JavaScript code separate).

JavaScript is a case-sensitive programming language. In order to prevent errors from occur-

ring, you must use correct capitalization when writing JavaScript code. For example,

JavaScript requires that whenever you use the document object on any of its methods and

properties that you use all lowercase.

Case-sensitivity aside, JavaScript is regarded as a very flexible programming language. It

imposes a minimal set of rules regarding statement syntax. Statements begin and end on the

same line. However, you can continue a statement onto another line using concatenation

(explained later in this chapter). If desired, you can place multiple statements on a single line

if you separate them with semicolons (;). In JavaScript, semicolons are used to identify the

end of statements. Technically, the use of semicolons to mark the end of statements is

optional; however, it is considered good form to use them anyway.

Like (X)HTML and CSS, JavaScript allows you to make liberal use of white space.
You may insert blank lines in between statements or indent statements to make
your scripts more readable.

TRICK

HTML, XHTML, and CSS for the Absolute Beginner288

JavaScript is also capable of interacting with the user and responding to changes that occur

What about Browsers That Do Not Support JavaScript?
Today, there are still many people surfing the Internet with web browsers that do not support

JavaScript or that have been configured not to support it. This makes things challenging for

web developers. To address this challenge, most web developers use (X)HTML comments to

hide JavaScript statements from non-supporting browsers. As you know, (X)HTML comments

are created using the <!-- and --> characters. Anything placed in a comment is ignored by

the browser.

All browsers, even those that do not support JavaScript, know not to display the <script> tags.

However, browsers without support for JavaScript do not know how to process statements

embedded within the <script> tags. As a result, these browsers will display the script state-

ments as part of the web page. The result is not pretty. To keep this from occurring, enclose

any JavaScript statements located inside the script elements within (X)HTML comments.

Doing this prevents browsers that do not support JavaScript from displaying any statements

on your web pages (intermixed with real content). The following example demonstrates how

to do this.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Ch. 9 - Hiding JavaScript from non-supporting browsers</title>

 <script type = "text/javascript">

 <<!-- Start hiding JavaScript statements

 document.write("If you see this your browser supports JavaScript!");

 /// End hiding JavaScript statements -->

 </script>

 </head>

 <body>

 </body>

</html>

Chapter 9 • Client-Side Scripting 289

Creating a Simple JavaScript
Now that you know the syntax required to work with the script element, let’s put this knowl-

edge to use by creating a simple JavaScript and adding it to an XHTML document. The markup

and JavaScript statements that make up this example are shown here:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Chapter 9 - A simple JavaScript</title>

 </head>

 <body>

 <script type = "text/javascript">

 <!-- Start hiding JavaScript statements

 document.write("Here I am!");

 // End hiding JavaScript statements -->

 </script>

 </body>

</html>

In this example, a simple JavaScript has been embedded directly into the body section of

the web document. The first and last JavaScript statements are the script’s opening and clos-

ing tags. The statement in the middle instructs the browser to write a text string of "Here I

am " to the current document (e.g., on the web page).

Running Your JavaScripts
To test the execution of your new JavaScript, simply open the web document that contains it

using your web browser. In response, the browser will render the document’s markup and

then execute the scripts. Figure 9.4 shows the result that you will see in your web browser.

Assuming you did not mistype the document’s JavaScript when keying it in, you should see

the sentence Here I Am! on the browser window.

HTML, XHTML, and CSS for the Absolute Beginner290

FIGURE 9.4

Testing the
execution of a

JavaScript
embedded within

an XHTML
document.

DIFFERENT WAYS OF INTEGRATING JAVASCRIPT INTO

YOUR DOCUMENTS

You can integrate JavaScript into your web documents in a variety of ways, including embed-

ding scripts into either the head or body sections. You can also execute external JavaScript files,

separating JavaScript code from your markup. You can even embed JavaScript statements

directly into (X)HTML markup.

Embedding JavaScripts in the head Section
Most Ajax developers embed their JavaScripts in the head sections of their (X)HTML pages.

JavaScripts placed in the head section can be automatically or conditionally executed when

your (X)HTML pages load. By placing your JavaScript functions and variable declarations in

the head section, you ensure they are defined when the web page loads, making them ready

and available when called upon for execution.

A variable is a pointer or reference to a location in memory where data is stored.
A function is a named collection of code statements that can be called on to
execute and perform a specific task.

The following XHTML document provides an example of how to embed a JavaScript in a doc-

ument’s head section. In this example, the script is automatically executed when the web

browser loads the document.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

HINT

Chapter 9 • Client-Side Scripting 291

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Chapter 9 - Embedding a JavaScript in the head section</title>

 <script type = "text/javascript">

 <!-- Start hiding JavaScript statements

 document.write("Up, up, and away!");

 // End hiding JavaScript statements -->

 </script>

 </head>

 <body>

 </body>

</html>

In the previous example the window object’s alert method (window.alert) is
used to display a text string in a popup dialog window. This method is often used
to display a simple message that does not require user interaction. The alert
method has the following syntax.

window.alert("message");

message represents a text string that is to be displayed. The popup dialog window
that is used to display the message includes an OK button that when clicked
closes the window. More about how to work with objects and methods is pro-
vided later in this chapter.

Figure 9.5 shows the output that is generated when this example is loaded into the browser.

FIGURE 9.5

By default, any
JavaScript

embedded in an
(X)HTML

document’s head
section is

automatically
executed when
loaded by the

browser.

TRICK

HTML, XHTML, and CSS for the Absolute Beginner292

By default, any JavaScript embedded inside a document’s head section is automatically exe-

cuted when the page loads. However, any JavaScript statements organized into functions are

only executed when explicitly called to run. The following document shows just such an

example. Here, an XHTML page contains an embedded JavaScript that is made up of a function

named Fly(). When the document that contains it is loaded, the function is not automatically

executed.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Chapter 9 - Creating a JavaScript function</title>

 <script type = "text/javascript">

 <!-- Start hiding JavaScript statements

 function Fly() {

 window.alert("Up, up, and away!");

 }

 // End hiding JavaScript statements -->

 </script>

 </head>

 <body>

 </body>

</html>

You will learn all about functions and how to control their execution later in this chapter.

Embedding JavaScripts in the body Section
As you have seen, JavaScripts can also be placed in the body section of your (X)HTML document.

These scripts are automatically executed when the document loads.

<body>

 <script type = "text/javascript">

 <!-- Start hiding JavaScript statements

 window.alert("Up, up, and away!");

Chapter 9 • Client-Side Scripting 293

 // End hiding JavaScript statements -->

 </script>

</body>

Storing Your JavaScripts Externally
Large (X)HTML documents can be made of many different scripts with various levels of com-

plexity. As with CSS, it is often a good idea to keep your markup and JavaScript separate. This

is easily accomplished using external JavaScript files. To create an external JavaScript file, all

you have to do is create a plain text file, add your JavaScript code to it, and save it with a .js

file extension. Once created, you can refer to it using the script element’s scr attribute as

demonstrated here:

<script src = "Test.js" type = text/javascript"> </script>

The external JavaScript file can be used to store any number of JavaScript statements. It can-

not, however, contain any (X)HTML markup. If any markup is found, an error will occur.

There are many benefits to using external JavaScripts. External JavaScripts mean smaller (X)

HTML documents, which makes your (X)HTML documents easier to manage. External

JavaScripts can be used by more than one document, allowing for code reuse. If you ever need

to modify an external JavaScript, you can do so without having to edit every (X)HTML docu-

ment that references it.

Embedding JavaScript Statements inside HTML Tags
One last option for integrating JavaScript into your (X)HTML document is to embed individual

JavaScript statements within individual (X)HTML tags, as demonstrated here:

<body onLoad = document.write("Hello!")> <body>

In this example, a JavaScript statement (onLoad = document.write("Hello!") has been embed-

ded within the document’s opening <body> tag. This statement executes when the document

is loaded into the browser. It instructs the browser to display a text string directly in the

browser window. Embedding JavaScript statements within (X)HTML elements in this manner

provides an easy way to execute small JavaScript statements.

DOCUMENTING YOUR SCRIPTS

In order to make your JavaScripts self-documenting and easier to maintain, you should

include embedded comments in your code that document what is going on in your web doc-

uments. Comments do not affect script performance, so use them liberally. JavaScript

supports two types of comments. You can add a single line comment to a script by

typing // followed by the comment, as demonstrated here:

HTML, XHTML, and CSS for the Absolute Beginner294

//The following statement displays a greeting

document.write("Hello!");

If you want, you can append comments to the end of statements as shown here.

document.write("Hello!"); //The following statement displays a greeting

You can also create multi-line comments by enclosing text inside the /* and */ characters, as

shown here:

/* The following statement displays a text message in the browser windows

that greet the user */

document.write("Hello!");

DEALING WITH DIFFERENT TYPES OF VALUES

Most JavaScripts store and process some type of data when they execute. JavaScript automat-

ically does its best to make a determination about the type of data it is presented with. This

determination has a direct impact on how the data is handled. Table 9.1 outlines different

types of values supported by JavaScript.

T A B L E 9 . 1 V A L U E S S U P P O R T E D B Y J A V A S C R I P T

Value Description

Boolean A value indicating a condition of either true or false

Null An empty value

Numbers A numeric value

Strings A string of text enclosed in matching quotation marks

Once specified or collected, you can store data in your scripts using variables. A variable is a

pointer or reference to a location in memory where a piece of data is stored.

STORING AND RETRIEVING DATA

JavaScript allows you to store and retrieve individual pieces of data as well as collections of

data. Individual pieces of data are managed using variables. Collections of data are managed

using arrays. You will learn how to work with both variables and arrays in the sections that

follow.

Chapter 9 • Client-Side Scripting 295

Defining JavaScript Variables
In order to use a variable in a JavaScript, it must be declared (or defined). You can declare a

variable explicitly or implicitly. An explicitly declared variable is defined before it is refer-

enced using the var keyword. The following example demonstrates how to explicitly declare

a variable.

var playerScore = 1000;

Note that in the preceding example a numeric value of 1000 was assigned to the
variable. If you assign a text string to a variable, you must enclose the string inside
quotation marks, as demonstrated here:

var playerCharacter = "Wizard";

Here, a variable named playerScore has been declared. It has also been assigned an initial

value of 1000. To implicitly declare a variable, you simply reference it for the first time without

first declaring it, as demonstrated here:

playerScore = 1000;

Explicit variable declaration is considered to be good form and is highly recommended.

It is not necessary to assign a variable a value at declaration time. However, doing
so can make your script code easier to understand and also helps JavaScript de-
termine the type of data the variable will be used to store.

Naming Your Variable
When assigning names to your variables, you should take care to assign names that are

descriptive of the variable’s purpose. For example, totalScore is a much more descriptive

variable name than x. In addition, you must follow the rules outlined below when assigning

variable names.

• Variable names must start with a letter or the underscore character.

• Variable names cannot contain blank spaces.

• Variable names can only be made of letters, numbers, and the underscore character.

• You cannot use reserved words as variable names.

JavaScript variables are case-sensitive. If you assign a variable a name of totalScore, you must

use the exact same case when referring to it in other parts of your JavaScript. If you accidently

make a typo of totalscore or use a different case like TOTALSCORE or totalscore, JavaScript will

regard each of these as being different variables.

TRAP

HINT

HTML, XHTML, and CSS for the Absolute Beginner296

Understanding Variable Scope
Variable scope refers to the location within a script where a variable is accessible. JavaScript

supports both global and location scope. Global variables can be accessed by any script

embedded within an (X)HTML document. Local variables exist within functions and can only

be accessed by statements located in the functions where the variables are defined.

Global variables are accessible by any script located within a web document. There are two ways

of defining global variables. These include:

• Making an initial reference to a new variable from inside a function (without using the

var keyword).

• Declaring a variable outside of a function (with or without the var keyword).

A local variable is declared inside a function by preceding its initial reference with the var

keyword. A function is a named collection of code statements. Functions can be called from

different locations within a document. The following example demonstrates how to create a

local variable.

function DisplayMsg() {

 var message = "Well, hello there!";

 document.write(message);

}

In this example, a function named DisplayMsg() has been defined. When executed statements

in the function declare a local variable named message, assign it a text string, and then display

the string (in the browser window). Because it is a local variable, the value assigned to

message is not accessible from outside the function.

WORKING WITH COLLECTIONS OF DATA

Depending on how much data you need to collect and process on your web pages, there may

be times when working with individual variables becomes impractical. In these situations,

you can use arrays to store large collections of data. An array is an indexed list of values. Arrays

can store any type of value. For example, the following statements declare an array and then

use it to store three text strings.

powers = new Array(2);

powers[0] = "Flight";

powers[1] = "Super Strength";

powers[2] = "Heat Vision";

Chapter 9 • Client-Side Scripting 297

The first statement declares an array named powers using the required new keyword. The array

has been set up to store five values. The remaining statements populate the array with data.

In JavaScript, array’s indices begin with an index position of 0. So, in the previous example,

the powers array can store three values, in index positions 0 through 2.

Accessing Array Elements
To access a value stored in an array, you must specify the array’s name followed by the value’s

index position enclosed in square brackets. As an example, look at the following document.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Ch. 9 - Working with arrays</title>

 <script type = "text/javascript">

 <!-- Start hiding JavaScript statements

 powers = new Array(2);

 powers[0] = "Flight";

 powers[1] = "Super Strength";

 powers[2] = "Heat Vision";

 document.write("The first super power is " + powers[0]);

 // End hiding JavaScript statements -->

 </script>

 </head>

 <body>

 </body>

</html>

Remember, JavaScript arrays begin at index position 0. The first item in the array is located

at index position 0 (e.g., Flight).

HTML, XHTML, and CSS for the Absolute Beginner298

Processing Arrays with Loops
Processing the array elements an element at a time is impractical for large arrays containing

dozens, hundreds, or thousands of elements. Instead, web developers use loops to process

array contents as demonstrated here:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Ch. 9 - Working with functions</title>

 <script type = "text/javascript">

 <!-- Start hiding JavaScript statements

 powers = new Array(2);

 powers[0] = "Flight";

 powers[1] = "Super Strength";

 powers[2] = "Heat Vision";

 document.write("List of Super Powers
");

 for (var i = 0; i < powers.length; i++) {

 document.write("* " + powers[i] + "
");

 }

 // End hiding JavaScript statements -->

 </script>

 </head>

 <body>

 </body>

</html>

In this example, an array named powers has been defined and populated with three values. A

for loop is used to process the array, starting at powers[0]. Each time the loop iterates, the

value of i is incremented by 1, causing the loop to process the next element stored in the

array. Take note of the use of the array object’s length property. This property stores a numeric

value representing the array’s length. It is used to control loop execution, halting the loop

when the end of the array is reached. Figure 9.6 shows the output produced when this example

is executed.

Chapter 9 • Client-Side Scripting 299

FIGURE 9.6

Processing the
contents of an

array using a loop.

Manipulating and Comparing Data
There is a lot more to working with data than collecting, storing, retrieving, and displaying

it. Most scripts analyze data in some manner. To do this, you need to learn how to work with

a number of operators that facilitate mathematic operations, data assignment, and value

comparison.

Performing Mathematic Calculations
JavaScript supports a range of arithmetic operations that facilitate the development of arith-

metic calculations when working with numeric data. Table 9.2 outlines and demonstrates

the use of these operations. With this collection of operators at your disposal, you can develop

programming logic that performs virtually any type of calculation you might want to process.

While use of the first four operators shown in Table 9.2 is self-explanatory, the remaining

operators require explanation. The x++ and ++x operators are used to increment a value of a

numeric variable by 1. The difference between these two operators lies in when the update

occurs. Suppose you had two variables, totalScore and points. If points was equal to 100 when

the following statement executed, the value of points would first be incremented by 1 and

then its value (101) would be assigned to totalScore.

totalScore = ++points;

As demonstrated next, use the x++ operator in place of the ++x operators to generate a differ-

ent result.

totalScore = points++;

HTML, XHTML, and CSS for the Absolute Beginner300

T A B L E 9 . 2 J A V A S C R I P T O P E R A T O R S

Operator Description Example

+ Adds two values together totalScore = 5 + 10

- Subtracts one value from another totalScore = 10 - 5

* Multiplies two values together totalScore = 5 * 10

/ Divides one value by another totalScore = 10 / 5

-x Reverses a variable’s sign count = -count

x++ Post-increment (returns x, then increments

x by one)

x = y++

++x Pre-increment (increments x by one, then

returns x)

x = ++y

x-- Post-decrement (returns x, then decrements

x by one)

x = y--

--x Pre-decrement (decrements x by one, then

returns x)

x = --y

Here, the value of points (e.g., 100) is first assigned to totalScore (setting it equal to 100). Then

the value of points is incremented by 1 to 101. The --x and x-- operators work just like the

++x and x++ operators—the difference being that they decrement a variable’s value instead of

incrementing it.

Assigning Values to Variables
To assign a value to a variable, you use the = (equals) operator. To change a variable’s value,

all you have to do is assign it a different value, as demonstrated here.

totalScore = 0;

.

.

.

total = 100;

In addition to the = operator, JavaScript supports all of the operators listed in Table 9.3.

Chapter 9 • Client-Side Scripting 301

T A B L E 9 . 3 J A V A S C R I P T A S S I G N M E N T O P E R A T O R S

Operator Description Examples

= Sets a variable value equal to some value x = y + 1
+= Shorthand for x = x + y (addition) x += y
-= Shorthand for x = x y (subtraction) x -= y

*= Shorthand for x = x * y (multiplication) x *= y
/= Shorthand for x = x / y (division) x /= y
%= Shorthand for x = x % y (remainder) x %= y

Let’s look at an example of how to work with each of the operators shown in Table 9.3.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Ch. 9 - Working with JavaScript assignment operators</title>

 <script type = "text/javascript">

 <!-- Start hiding JavaScript statements

 var a = 3;

 var b = 10;

 var c = 0;

 c = a + b;

 document.write("a = " + a + ", b = " + b + ", c = " + c + "
");

 document.write("
a + b = " + c + "
");

 c += 2

 document.write("
c += 2 = " + c + "
");

 c -= 5

 document.write("
c -= 5 = " + c + "
");

 c *= 3

 document.write("
c *= 3 = " + c + "
");

 c /= 2

 document.write("
c /= 2 = " + c + "
");

 c %= 7

HTML, XHTML, and CSS for the Absolute Beginner302

 document.write("
c %= 7 = " + c + "
");

 // End hiding JavaScript statements -->

 </script>

 </head>

 <body>

 </body>

</html>

Notice that the
 tag has been embedded within various statements as a
means of controlling line breaks. Also note the use of the + operator. When used
with strings, the + operator joins or concatenates two strings together to create
a new larger string.

Figure 9.7 shows the output generated when this example is loaded into the browser.

FIGURE 9.7

A demonstration
of how to work

with JavaScript’s
operators.

Comparing Values
To be useful, data generally needs to be analyzed. With numeric data this typically means

performing different types of comparison operations. Based on the results of this analysis, a

JavaScript can alter its execution. A JavaScript might, for example, take one action if the value

of a variable is greater than 1000 and another action if it is not. Table 9.4 provides a listing of

the different types of comparison operators supported by JavaScript.

TRICK

Chapter 9 • Client-Side Scripting 303

To determine if two values are equal, you must use the == comparison operator (not the =

assignment operator). If you get these two operators mixed up an error will occur. As an

example of how to work with these operators, look at the following example.

if (x == y) {

document.write("x equals y");

}

Here, a comparison is made between two values stored in the x and y variables. If the values

are equal a text string is displayed. If you modify this example, as demonstrated here, you

can determine if the value of x is greater than or equal to the value of y.

if (x >= y) {

document.write("x is greater than or equal to y");

}

MAKING DECISIONS

Conditional programming logic gives you the ability to make decisions and to alter the logical

execution flow of code statements in your JavaScripts based on the result of comparison

operations. Conditional logic allows you to execute a set of statements based on whether a

tested condition evaluates as true.

Working with the if Statement
The if statement gives you the ability to compare two values and to conditionally execute

one or more statements based on the result of that analysis. In its most basic form, the if

statement uses the following syntax.

if (condition) statement

T A B L E 9 . 4 J A V A S C R I P T C O M P A R I S O N O P E R A T O R S

Operator Description Example

== Equal to x == y

!== Not equal to x !== y

> Greater than x > y

>= Greater than or equal to x >= y

< Less than x < y

<= Less than or equal to x <= y

HTML, XHTML, and CSS for the Absolute Beginner304

Here, condition is an expression that when evaluated generates a value of true or false. Note

that the expression that is analyzed must be enclosed in parentheses. Take a look at the fol-

lowing example which shows you how to apply this version of the if statement.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Ch. 9 - An example of how to work with the if statement</title>

 <script type = "text/javascript">

 <!-- Start hiding JavaScript statements

 var totalScore = 1000;

 if (totalScore > 1001) document.write("You win!");

 // End hiding JavaScript statements -->

 </script>

 </head>

 <body>

 </body>

</html>

In this example, a variable named totalScore is declared and assigned a value of 1000. Next,

an if statement is used to determine if the value of totalScore is greater than 1001 (which it

is not). Had it been greater than 1001, a message would have been displayed. However, since

totalScore is equal to 1000, nothing happens.

Generating Multiline if Statements
If you include { and } characters, as demonstrated in the following example, you can use the

if statement to create a code block, which can include any number of statements. Every

statement in the code block will execute if the tested condition evaluates as true.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

Chapter 9 • Client-Side Scripting 305

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Ch. 9 - An example of how to work with the if statement</title>

 <script type = "text/javascript">

 <!-- Start hiding JavaScript statements

 var totalScore = 20000;

 if (totalScore > 10000) {

 document.write("Game over. You win!");

 }

 // End hiding JavaScript statements -->

 </script>

 </head>

 <body>

 </body>

</html>

In this example, two statements are executed if the value assigned to totalScore is greater

than or equal to 10000.

Handling Alternative Conditions
The if statement supports an optional else keyword that when used lets you modify an if

statement code block so that it can execute an alternative set of statements if the tested

condition proves false. An example of how this works is provided here:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Ch. 9 - An example of how to work with the if statement</title>

 <script type = "text/javascript">

 <!-- Start hiding JavaScript statements

 var totalScore = 9999;

 if (totalScore <= 10000) {

 document.write("Game over. You lose.");

HTML, XHTML, and CSS for the Absolute Beginner306

 }

 else {

 document.write("Game over. You win.");

 }

 // End hiding JavaScript statements -->

 </script>

 </head>

 <body>

 </body>

</html>

In this example, the message Game over. You lose. is displayed if totalScore is less than or

equal to 10000 and a string of Game over. You win! is displayed if totalScore is not less than

or equal to 10000. Note that in this example two separate code blocks have been defined, each

of which has its own set of opening { and closing } characters.

Nesting if Statements
If you need to perform complex conditional logic that involves comparing multiple values,

where one decision is based on the outcome of another decision, you can nest if statements

to outline the required logic. The following example demonstrates how to nest if statements.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Ch. 9 - An example of how to work with the if statement</title>

 <script type = "text/javascript">

 <!-- Start hiding JavaScript statements

 var gameOver = false;

 var totalScore = 9999;

 if (gameOver == true) {

 if (totalScore <= 10000) {

 document.write("Game over. You lose.");

 }

Chapter 9 • Client-Side Scripting 307

 else {

 document.write("Game over. You win.");

 }

 }

 else {

 document.write("Please try again.");

 }

 // End hiding JavaScript statements -->

 </script>

 </head>

 <body>

 </body>

</html>

Here, the value assigned to gameOver is analyzed to determine if it is equal to true. If it does

not equal true, the statement embedded in the else code block is executed.

Evaluating Conditions with the switch Statement
If you need to evaluate a series of possible values to determine a match, you can do so using

a series of if statements. However, an easier and more efficient option is to use the switch

statement. The switch statement specifies an expression which is then compared to a series

of case statements to see if a match can be found. If a match is found, statements belonging

to the matching case statement are executed. The switch statement’s syntax is outlined here:

switch (expression) {

 case label:

 statements;

 break;

 .

 .

 .

 case label:

 statements;

 break;

 default:

 statements;

}

HTML, XHTML, and CSS for the Absolute Beginner308

The value of expression is compared to the expression outlined in each case statement’s

label. The statements of the first case statement that result in a match are executed. If no

match is found, the statements that belong to the optional default statement, if specified,

are executed.

The break statement at the end of each set of statements belonging to the case statement is

optional. When specified, the break statement instructs JavaScript to exit the switch state-

ment. If you do not specify a break statement at the end of each case statement code block,

the script will execute the statements of any case statement that matches (instead of just the

statements belonging to the first case statement that matches).

To better understand how to work with the switch statement, let’s look at an example.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Ch. 9 - An example of how to work with the switch statement</title>

 <script type = "text/javascript">

 <!-- Start hiding JavaScript statements

 var color = window.prompt("Pick a color: red, green, or blue.");

 switch (color) {

 case "red":

 document.write("Rose petals are red.");

 break;

 case "green":

 document.write("Stems are green.");

 break;

 case "blue":

 document.write("Violets are blue.");

 break;

 default:

 document.write("Error: Invalid input.");

 }

 // End hiding JavaScript statements -->

 </script>

 </head>

Chapter 9 • Client-Side Scripting 309

 <body>

 </body>

</html>

In this example, the user is prompted to enter a color. Once the user’s input is collected, it is

assigned to a variable named color. The value of color is then analyzed. The message displayed

depends on the result of that analysis.

Note the manner in which the color variable’s value is assigned in the previous
example. The window object’s prompt method is used to display the message in a
popup dialog window that prompts the user to input. The prompt method’s syntax
is outlined here:

window.prompt("message" [, "default"]);

message represents the string displayed in the popup dialog window. default is
an optional parameter. If specified, it displays default input in the popup dialog
window’s text field. The window object’s prompt method is great for situations
where you need to collect a small piece of data from the user.

USING LOOPS TO WORK EFFICIENTLY

A loop is a collection of statements that are executed repeatedly. Programmers use loops to

process large amounts of data and to execute repetitive tasks. The power of loops lie in the

fact that with just a few lines of code you can process an unlimited amount of data or perform

a given task an infinite number of times.

Creating a Loop Using the for Statement
The for statement allows you to set up a loop that executes for as long as a specified condition

remains true. A variable is used to manage loop execution. The for loop consists of three parts:

a starting expression, a tested condition, and an increment statement. The loop’s syntax is

outlined here:

for (expression; condition; increment) {

statements;

}

You may place as many JavaScript statements as you want in between the loop’s opening and

closing bracket. These statements are executed every time the loop iterates (repeats). As an

example of how to work with the for statement, look at the following example.

TRICK

HTML, XHTML, and CSS for the Absolute Beginner310

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Ch. 9 - Executing a for loop</title>

 <script type = "text/javascript">

 <!-- Start hiding JavaScript statements

 for (i = 1; i <= 10; i++) {

 document.write(i,"
");

 }

 // End hiding JavaScript statements -->

 </script>

 </head>

 <body>

 </body>

</html>

In this example, a loop has been set up to repeat 10 times. In its first iteration, the value of

i is set to 1. The loop repeats 10 times, terminating when the value exceeds 10. Figure 9.8

shows the output generated when this example executes.

FIGURE 9.8

Using a for loop to
count from 1 to 10.

Chapter 9 • Client-Side Scripting 311

Creating a Loop Using the while Statement
JavaScript also supports the while statement, which you can use to set up a loop that executes

for as long as a specified condition is true. The while loop’s syntax is outlined here:

while (condition) {

statements;

}

The following example demonstrates how to work with the while statements.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Ch. 9 - Executing a while loop</title>

 <script type = "text/javascript">

 <!-- Start hiding JavaScript statements

 var counter = 10;

 document.write("<p>Begin countdown.</p>");

 while (counter > 0) {

 document.write(counter + "
");

 counter = counter - 1;

 }

 document.write("
Blastoff!");

 // End hiding JavaScript statements -->

 </script>

 </head>

 <body>

 </body>

</html>

In this example, a while loop is configured to iterate for as long as the value of counter is

greater than 0. Every time the loop repeats, the value of counter is displayed and decremented

by 1. Figure 9.9 shows the output that is displayed when this example is executed.

HTML, XHTML, and CSS for the Absolute Beginner312

FIGURE 9.9

An example of
how to use a
while loop to

iterate 10 times.

Creating a Loop Using the do. . .while Statement
Another type of loop supported by JavaScript is the do. . .while loop. This loop repeats until

a tested condition becomes false. The do...while loop’s syntax is outlined here:

do {

statements;

} while (condition)

The do. . .while loop distinguishes itself from the while loop in that it always executes at

least once. This is because the loop’s condition is not evaluated until the end of the loop. The

following example demonstrates how use the do…while loop.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Ch. 9 - Executing a do...while loop</title>

 <script type = "text/javascript">

 <!-- Start hiding JavaScript statements

 var counter = 11;

 document.write("<p>Begin countdown.</p>");

 do {

 counter = counter - 1;

Chapter 9 • Client-Side Scripting 313

 document.write(counter, "
");

 } while (counter > 1)

 document.write("
Blastoff!");

 // End hiding JavaScript statements -->

 </script>

 </head>

 <body>

 </body>

</html>

The output generated by this example is the same as that produced by the while loop example.

Breaking out of Loops
Loops automatically execute over and over again from beginning to end. While this is usually

what you want, there may be times you will want to halt loop execution or skip an iteration

of the loop. The following example shows you can use the break statement to halt a loop’s

execution.

for (i = 1; i <= 5; i++) {

 document.write(i,"
");

 if (i == 3) bbreak;

}

When executed, this example displays the following output on the browser window.

1

2

3

In this example, the break statement has been used to halt the loop when the value of i

becomes 5. In similar fashion, you can use the continue statement to prematurely terminate

the current execution of a while loop. This allows the loop to continue running. The following

example demonstrates how this works.

for (i = 1; i <= 5; i++) {

 if (i == 3) ccontinue;

 document.write(i,"
");

}

HTML, XHTML, and CSS for the Absolute Beginner314

When executed, this example displays the following output on the browser window.

1

2

4

5

Note that the number 3 is missing from this output as a result of the premature termination

of the fifth iteration of the loop.

ORGANIZING YOUR JAVASCRIPTS INTO FUNCTIONS

A function is a collection of code statements that can be called by name to execute and perform

a specific task. Web developers that use JavaScript usually store functions in the head section

of (X)HTML documents ensuring they are available as soon as the web document is loaded

by the browser. Placing all your functions in one place also makes them easier to find and

maintain.

Defining Functions
A function must be defined before it can be executed. If an attempt is made to create a function

that has not been defined, an error will occur. The syntax that you must follow when defining

functions is outlined here:

function FunctionName(p1, p2,....pn) {

statements;

return

}

FunctionName represents the function’s name. The function’s name must be immediately fol-

lowed by parentheses. The parentheses are used to define an optional list of comma-separated

arguments for the function to process. You must provide the parentheses even if a function

does not define any arguments. A function can hold as many statements as you want. These

statements must be embedded within the function’s opening and closing curly braces. Func-

tions can include an optional return statement that, when present, halts the function’s

execution. The result statement can also return an optional value back to the statement that

executed the function.

In the following example a function named Verify() is defined. It accepts one argument as

input. The function automatically assigns the incoming argument to a local variable named

age. It then analyzes the value assigned to age to determine if the user is old enough to play

and then displays either of two messages:

Chapter 9 • Client-Side Scripting 315

function Verify(age) {

 if (age < 21) {

 window.alert("Sorry, you are not old enough to play this game.");

 return "true"

 } else {

 window.alert("Let's get ready to rumble...");

 return "false"

 }

}

JavaScript functions are not automatically executed. They must be explicitly called upon in

order to execute. Functions facilitate code reuse by allowing you to call upon a function from

any location within a document. This eliminates the need to duplicate script statements and

results in smaller scripts.

Executing Functions
You can execute a JavaScript function in two different ways. First, you can call on a function

by typing its name, as shown here:

DisplayMsg();

Here, a function named DisplayMsg() is executed. No arguments are passed to the function

but the parentheses are required anyway. When called, the function executes. When finished,

processing flow is returned to the next statement in the script.

Functions designed to process arguments can be passed data when called, as demonstrated

here:

UpdateScore(1000);

In this example, a function named UpdateScore() is executed and passed a value of 1000. You

can pass any number of arguments to a function as demonstrated below (provided the func-

tion has been set up to handle them).

UpdateAllScores(1000, 850, 75);

A second way of executing a function is to call on the function as part of an expression. This

option requires that the function be set up to return a value. As an example, the following

statement executes the UpdateScore() function and stores the result that is returned in a

variable named totalScore.

totalScore = UpdateScore();

HTML, XHTML, and CSS for the Absolute Beginner316

To make sure that you have a good understanding of how to execute functions and return a

result from them, look at the following example.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Ch. 9 - Working with functions</title>

 <script type = "text/javascript">

 <!-- Start hiding JavaScript statements

 function Verify() {

 var result;

 result = window.prompt("How old are you?","");

 return result;

 }

 // End hiding JavaScript statements -->

 </script>

 </head>

 <body>

 <script type = "text/javascript">

 <!-- Start hiding JavaScript statements

 playerAge = Verify();

 if (playerAge > 17) {

 window.alert("Let's get ready to rumble...");

 } else {

 window.alert("Sorry. Come back and play when you are 18.");

 }

 // End hiding JavaScript statements -->

 </script>

 </body>

</html>

Chapter 9 • Client-Side Scripting 317

In this example, a function named Verify() is defined. When executed, the function displays

a popup dialog window that asks the user to enter his age. The user’s input is then assigned

to a variable named result, which is then returned to the calling statement. The function is

executed by a statement located in the body section. The script in the body section takes the

value that is returned by the function and assigns it to a local variable named playerAge, which

it then analyzes.

Creating Interactive Web Pages Using Event-Driven Scripts
Events are things that occur within the browser. Events execute when the mouse clicks on

something. Events occur when the mouse moves, when keys are pressed, and the browser

window is moved, opened, or closed. Web browsers know how to recognize events and

respond to them. For example, if you click on a link, the onClick event occurs and the browser’s

default response is to load the link’s URL.

Using JavaScript you can create functions and associate them with specific events. To do this

you need to know how to work with event handlers. An event handler detects events and reacts

to them. Event handlers can be used to execute individual JavaScript statements or to call on

JavaScript functions. Events are associated with objects. The following example demonstrates

how to set up an event handler.

<body onload = "window.alert('Ta Da!')">

This event handler executes when the load event occurs, triggering the display of an alert

message. As this example demonstrates, you can execute any JavaScript statement using an

event handler. However, the real benefit of event handlers is their ability to execute functions.

Different Types of Javascript Events
JavaScript can react to a host of events. Table 9.5 provides a list of commonly used events

along with their associated event handlers.

Each event has an accompanying event handler. Examples of how to work with these event

handlers are provided in the sections that follow.

HTML, XHTML, and CSS for the Absolute Beginner318

Managing Window Events
JavaScript can react to a number of different events that involve the browser window. These

events include the load, unload, and resize events. To create web pages that can respond to

these events all you need do is place the appropriate event handlers in your (X)HTML docu-

ment’s opening <bodytag, as demonstrated here:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Ch. 9 - Working with window events</title>

T A B L E 9 . 5 J A V A S C R I P T E V E N T S A N D E V E N T H A N D L E R S

Event Handler This event occurs when:

abort onabort An action is aborted
blur onblur An item loses focus
change onchange A control’s data is changed
click onclick When an element is clicked
dblclick ondblclick When an element is double clicked
dragdrop ondragdrop An element is dragged and dropped
error onerror A JavaScript error occurs
focus onfocus An element receives focus
keydown onkeydown A keyboard key is held down
keypress onkeypress A keyboard key is pressed
keyup onkeyup A keyboard key is released
load onload A web page is loaded
mousedown onmousedown One of the mouse buttons is pressed
mousemove onmousemove The mouse is moved
mouseout onmouseout The mouse is moved off an element
mouseover onmouseover The mouse is moved over an element
mouseup onmouseup The mouse’s button is released
reset onreset A form’s Reset button is clicked
resize onresize An element is resized
submit onsubmit A form’s Submit button is clicked
unload onunload The browser unloads a web page

Chapter 9 • Client-Side Scripting 319

 </head>

 <body onload = "window.alert('Page loaded!')"

 onresize = "window.alert('Ouch, that hurts!')"

 onunload = "window.alert('Goodbye cruel world...')">

 </body>

</html>

Figures 9.10 through 9.12 show the output displayed when this document is loaded by the

browser, when its web page is resized, and when it is unloaded.

FIGURE 9.10

The onLoad event
occurs when a

document is first
loaded into the

browser.

FIGURE 9.11

The onResize
event occurs when
the user changes

the size of the
browser window.

FIGURE 9.12

The onUnload
event occurs when

the user loads a
different page or

closes the web
page or the

current page.

Events are also triggered when the user moves or clicks the mouse within the confines of the

browser window. Examples of mouse-related events include the onMouseOver and onMouseOut

events. As an example of how to develop a script that reacts to these two events, look at the

following document.

HTML, XHTML, and CSS for the Absolute Beginner

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 <meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

 <title>Ch. 9 - Working with mouse events</title>

 <script type = "text/javascript">

 <!-- Start hiding JavaScript statements

 function ShowMsg(input) {

 document.getElementById('placeholder').innerHTML = input;

 }

 // End hiding JavaScript statements -->

 </script>

 </head>

 <body>

 <p>

 <a href="http://www.courseptr.com"

 onmouseover = 'ShowMsg("Visit www.courseptr.com")'

 onmouseout = 'ShowMsg(" ")'>

 Go to www.courseptr.com

 </p>

 <div id = "placeholder"> </div>

 </body>

</html>

In this example, a link is displayed on the browser window. onMouseOver and onMouseOut event

handlers are displayed and clear the display of text on the browser window whenever the

mouse pointer is moved over and away from the link. Each time the mouse pointer moves

over the link, the DisplayMessage() function is executed. The function establishes a refer-

ence to the document’s div element and modifies its content. It does this using the

getElementByID() method in conjunction with the object’s innerHTML property. This allows it

to display text string that was passed to it as an argument.

Chapter 9 • Client-Side Scripting 321

BACK TO THE WORD DECODER CHALLENGE PROJECT

It is time to turn your attention back to this chapter’s project, the Word Decoder Challenge

game. This game presents the player with a scrambled word and challenges the player to

decode it. To complete this game you will have to develop a JavaScript that makes use of

variables, arrays, conditional logic, and events. The JavaScript will have to make use of meth-

ods and properties that interact with the DOM. To help give the game a little extra pizzazz,

CSS will be used to enhance presentation.

Designing the Application
As with every game project covered in this book, this game will be developed in a series of

steps, as outlined here:

1. Create a new XHTML document.

2. Develop the document’s markup.

3. Add meta and title elements.

4. Specify document content.

5. Create the document’s script.

6. Create an external style sheet.

7. Load and Test the Word Decoder Challenge Project.

Step 1: Creating a New XHTML Document
The first step in the development of the Word Decoder Challenge game is to create a new web

document. Do so using your preferred code or text editor. Save the document as a plain text

file named WordDecoder.html. This web document will make use of CSS style rules. Therefore,

you will need to create a second file named wd.css.

Step 2: Developing the Document’s Markup
The next step in the development of this project is to assemble the document’s markup. To

do so, add the following elements to the WordDecoder.html file.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

 <head>

 </head>

HTML, XHTML, and CSS for the Absolute Beginner322

 <body>

 </body>

</html>

Step 3: Adding meta and title Elements
Now it is time to complete the document head section by adding the elements responsible for

defining its meta and title elements. To do so, add the following elements to the document’s

head section.

<meta http-equiv="Content-type" content="text/xhtml; charset=UTF-8" />

<title>The Word Decoder Game</title>

This web page will use an external style sheet named wd.css to enhance its presentation.

Therefore, you will need to add the following tag to the end of the head section to make the

connection to the external style sheet.

<link href = "wd.css" type = "text/css" rel = "stylesheet" />

Step 4: Specifying Document Content
The markup for this document, shown below, is very straightforward. It uses div and p ele-

ments to group content and insert blank spaces. It displays a graphic image at the top of the

web page using an img element. It also makes use of a form that contains two button controls

and a text field. Note that this game also makes use of inline styles that set the initial visibility

state of these controls (to either visible or hidden). Later in the document’s JavaScript you

will add programming logic that takes control over the visible state of form control during

game play, making the control dynamically appear and disappear during game play.

<div id = "mainDiv">

 <p id = "instructions">

 Click on Get Word to retrieve a scrambled word and then try to

 figure out what it is. Type your answer in the text field and then click

 on the Check Answer button.

 </p>

 <form action = "WordDecorder.html">

Chapter 9 • Client-Side Scripting 323

 <div>

 <input type = "button" id = "GetWordBtn" value = "Get Word"

 onclick = "StartGame()"/>

 <div id = "ScrambledHeading" style="visibility: hidden">The scrambled

 word is:

 </div>

 <div id = "ScrambledDiv" > </div>

 <div id = "UnscrambledHeading" style = "visibility:hidden">

 <p>Unscramble and retype the word here:</p>

 </div>

 <input type = "text" size = "45" style = "visibility: hidden"

 id = "inputField"/>

 <p>

 <input type = "button" id = "checkAnswerBtn" value = "Check Answer"

 style="visibility:hidden" onclick = "CheckAnswer()"/>

 </p>

 </div>

 </form>

</div>

Note the including of the ID attribute in various elements throughout the markup. This pro-

vides hooks into each element, allowing the document’s JavaScript to interact with and

control these elements.

Step 5: Creating the Document’s Script
The document’s markup is now complete. The next step in the development of this game is

to lay out its JavaScript code. Begin by adding the following statements to the document’s

head section.

HTML, XHTML, and CSS for the Absolute Beginner324

<script type = "text/javascript">

<!-- Start hiding JavaScript statements

// End hiding JavaScript statements -->

</script>

Now that the script’s opening and closing tags are in place, add the following statements to

the script.

//Define global variables and an array

var Request = false;

var wordArray = new Array(10);

var scrambledWord = "";

var unscrambledWord = "";

//Populate the array in a string made up of copies of the same word (one

//unscrambled and the other scrambled

wordArray[0] = "dog gdo";

wordArray[1] = "cat tac";

wordArray[2] = "lion niol";

wordArray[3] = "elephant tnaphele";

wordArray[4] = "car rac";

wordArray[5] = "desk ksed";

wordArray[6] = "pen epn";

wordArray[7] = "envelope evneelop";

wordArray[8] = "nation niotan";

wordArray[9] = "imperial liaimper";

The first three statements above define three global variables and an array named wordArray.

The next ten statements populate the array with ten strings containing two versions of the

same word, separated by a blank space. The first version of the word is the word in its

unscrambled format. The second version of the word is the word in a scrambled format.

The rest of the script is made up of three functions. The StartGame() function, shown here, is

called for execution when the player clicks on the Get Word button (e.g., GetWordBtn). It passes

the getElementById() method ID of five form elements in order to establish a reference to

those elements. The statements then use the element’s style property’s visibility property

to control whether each element is visible. The next two statements clear out any text dis-

played in the form’s text control and in the div element named ScrambledDiv. The last thing

the function does is call on the GetWord() function to execute.

Chapter 9 • Client-Side Scripting 325

//This function is executed when the game’s Get Word button is clicked.

function StartGame() {

 //These statements control form element visibility

 document.getElementById("checkAnswerBtn").style.visibility = "visible";

 document.getElementById("GetWordBtn").style.visibility = "hidden";

 document.getElementById("inputField").style.visibility = "visible";

 document.getElementById("ScrambledHeading").style.visibility = "visible";

 document.getElementById("UnscrambledHeading").style.visibility =

 "visible";

 //These statements clear out any text displayed by these elements

 document.getElementById("inputField").value="";

 document.getElementById('ScrambledDiv').innerHTML = "";

 //This statement executes the getWord() function

 getWord();

}

The code statements that make up the getWord() function are shown below and should be

added to the end of the document’s JavaScript. The function begins by declaring a number

of variables used within the function. It then generates a random number between 0 and 9

and uses that number to select an element from the wordArray array, which is then assigned

to a variable named selectedWord. Next, the indexOf() method is used to locate the character

position of the blank space within the string stored in selectedWord. The substr() method is

used to assign the unscrambled portion of the string, starting at character position 0 out

to the character position of the blank space, to the unscrambled variable. Similarly, the

substr() function is used a second time to assign the scrambled portion of the string to the

scrambledWord variable, starting at one character position past the blank space out to the end

of the string. Lastly, the scrambled word is displayed on the browser window for the player

to see.

//This function retrieves a random word string for the player to guess

function getWord() {

 //Declare variables used within the function

 var randomNo = 0;

 var selectedWord = "";

HTML, XHTML, and CSS for the Absolute Beginner326

 var loc = 0;

 //Generate a random number from 0 to 9 and use it to select an element

 //from the array

 randomNo = Math.random() * 9;

 randomNo = Math.round(randomNo);

 selectedWord = wordArray[randomNo]

 loc = selectedWord.indexOf(" "); //Locate the blank space

 unscrambledWord = selectedWord.substr(0, loc); //Assign the unscrambled

 //word

 scrambledWord = selectedWord.substr(loc + 1); //Assign the scrambled word

 //Display the scrambled version of the word in the browser window

 document.getElementById('ScrambledDiv').innerHTML = scrambledWord;

}

The indexOf() method is a built-in JavaScript method that is used to locate the
starting character position of one string within another string. The substr()
method is used to extract a portion of a string. To learn more about these and
other built-in methods that come with JavaScript, visit http://
www.w3schools.com/jsref/jsref_obj_string.asp.

The last function in the document’s JavaScript is the CheckAnswer() function, which is

executed when the player clicks on the button control labeled Check Answer (e.g.,

checkAnswerBtn). It retrieves the player’s input and determines whether the player success-

fully decoded the scrambled word. It ends by resetting the form’s elements back to their

starting state, readying the game for another round of play.

//This function analyzes the player's input and resets the form to its

//starting state

function CheckAnswer() {

 //Analyze the player’s input

 switch (document.getElementById("inputField").value) {

 case unscrambledWord:

 window.alert("Correct. You successfully decoded the secret word!");

 break;

HINT

Chapter 9 • Client-Side Scripting 327

http://www.w3schools.com/jsref/jsref_obj_string.asp
http://www.w3schools.com/jsref/jsref_obj_string.asp

 case "":

 window.alert("You did not type anything!");

 break;

 default:

 window.alert("Incorrect. The secret word was " +

 unscrambledWord + ".");

 }

 //Reset the form back to its starting state

 document.getElementById("checkAnswerBtn").style.visibility = "hidden";

 document.getElementById("GetWordBtn").style.visibility = "visible";

 document.getElementById("inputField").style.visibility = "hidden";

 document.getElementById("ScrambledHeading").style.visibility = "hidden";

 document.getElementById("UnscrambledHeading").style.visibility = "hidden"

 document.getElementById('ScrambledDiv').innerHTML = "";

 document.getElementById("inputField").value = "";

}

Step 6: Creating an External Style Sheet
The WordDecoder.html document is styled using an external style sheet named wd.css. The

rules stored in this style sheet are shown here:

body {

 background-color: blue;

 font-family: Arial, sans-serif;

 font-weight: bold;

 text-align: center;

 }

#mainDiv {

 border-width: thick;

 border-style: double;

 border-color: blue;

 background-image: url("questionmark.png");

 width: 640px;

 height: 400px;

 padding: 20px;

 margin-top: 10%;

HTML, XHTML, and CSS for the Absolute Beginner328

 margin-left: auto;

 margin-right: auto;

 }

#ScrambledDiv {

 color: red;

 font-size: 2.5pc;

 }

#inputField {

 color: midnightblue;

 background-color: honeydew;

 font-size: 1.5pc;

 font-weight: bold;

 }

#instructions {

 text-align: left;

 }

The first style rule affects the document’s body section, setting the background color of the

browser window to blue, setting Arial as the font type, and assigning a bold font weight. In

addition, the alignment of text is set to center.

The second rule applies to the div element named mainDiv (e.g., a div element wrapped around

all of the elements located in the body section). The div element’s border is set to thick and

displayed using double blue lines. A background image is assigned to the div element that

will repeatedly display a light blue character as the element’s background. Next, the height

and width of the div element is set and a padding of 20 pixels is applied. Lastly, a margin is

applied to the top, left, and right side. Note the assignment of auto as the value of the

margin-left and margin-right properties. Together these properties instruct the browser to

horizontally center the div element and all its contents in the browser window.

The third rule styles a div element named ScrambledDiv, setting its color to red and its font

size to 2.5 times its default size. This rule controls the presentation of the scrambled word on

the browser window.

The fourth rule modifies the presentation of text in the form’s text control, setting its color

to midnight blue, its background to honeydew, its font size to 1.5 times its default size, and

its weight to bold. The last rule overrides the centered text alignment setting, inherited from

the first rule, left aligning the text for the p element whose ID is instructions.

Chapter 9 • Client-Side Scripting 329

Step 7: Loading and Testing the Word Decoder Challenge Game
As long as you have followed along carefully with all of the instructions that have been pro-

vided, your copy of the WordDecoder.html document should now be ready for testing. If you

have not already saved your new game, do so now and then load it into your web browser to

see how it works. Once you are confident that everything is working just right, post a copy of

it online at your website so that the world can play.

A complete copy of the source code for this project, including its style sheet and
the graphics needed to create its graphic controls, is available on the book’s
companion web page, located at www.courseptr.com/downloads.

SUMMARY

In this chapter you learned how to program using JavaScript. You learned different ways of

embedding JavaScripts in your web pages. You learned how to collect, store, and process data

using variables and to apply conditional and iterative programming logic. You also learned

how to use arrays to store and process collections of data. This chapter explained the impor-

tance and benefits of using functions to improve script organization. You learned how to

create functions that process arguments and return data. You also learned how to trigger

function execution back on the occurrence of events. On top of all this, you learned how to

create the Word Decoder Challenge Game.

Before you move on to Chapter 10, consider setting aside a few minutes to enhance the Word

Decoder Challenge game by implementing the following challenges.

Challenges

1. As currently written, the Word Decoder Challenge game only

has 10 words from which to choose. These words are stored in

an array named wordArray. Consider doubling or tripling the size

of this array and its contents.

2. Consider modifying the game by replacing its words with more

complex words and also adding the display of a sentence that

provides the player with an extra hint about what the word

means. One way of accomplishing this is to add a blank space

to the end of each array element followed by a string describing

the word. Another option is to display a third button on the

browser window that the player can click on if he wants a hint.

HINT

HTML, XHTML, and CSS for the Absolute Beginner330

www.courseptr.com/downloads

